Concentrations and speciation of potentially toxic trace elements in waters of an urban estuary; Bayou Bienvenue, New Orleans, Louisiana

Karen Johannesson

Department of Earth and Environmental Sciences, Tulane University, New Orleans, Louisiana

http://tulane.edu/sse/eens/faculty/kjohanne/index.cfm
kjohanne@tulane.edu
Acknowledgements

U.S. Geological Survey

Long-term Estuary Assessment Group (LEAG)

Tulane/Xavier Center for Bioenvironmental Research
Why Study Heavy Metals in Estuaries?

- Estuaries serve as nurseries for marine organisms
 - Commercially important shell- and fin-fishes
 - Shrimp, oysters, redfish

- Estuaries can act as natural “filters” for heavy metals and other pollutants

Bayou Bienvenue, Louisiana
Why Study Heavy Metals in Estuaries?

- **Current paradigm** → estuaries filter heavy metals

- **Reality** → little is actually known about the biogeochemical cycling and transport of heavy metals in Louisiana’s numerous estuaries
Metal Speciation

- It’s not enough to measure the concentrations of heavy metals
 - Tells us little about their bioavailability, toxicity, mobility

- Need to determine speciation
Metal Speciation

- The particular chemical form that an element exists in water
 - Free ion, e.g., $[\text{Cu}^{2+}]_F$
 - Bound to organic ligands
 - Complexed to inorganic ligands
 - Different redox species, e.g., As^{3+} vs. As^{5+}
Metal Speciation

- Speciation controls trace element’s:
 - Bioavailability
 - Free-ion activity model
 - Toxicity
 - As$^{3+}$ is 10 – 60 more toxic than As$^{5+}$
 - Effective solubility
 - Mobilization and transport in the environment
Methods/Description

- Collect series of surface waters samples along Bayou Bienvenue
- Ultra clean trace element techniques
- Clean hands – dirty hands
Bayou Bienvenue
Bayou Bienvenue

Dr. Alex Kolker from LUMCON will assist us with boat time
Blue dots show sampling sites on Bayou Bienvenue
Speciation Analysis

- Filtration
- Unfiltered samples
- Filtered through 0.45 um
 - colloidal
- Filtered through 0.02 um
 - “truly dissolved”
Trace Element Analysis

- Inductively Coupled Plasma Mass Spectrometry
- As, Se, Sb, Cr, Pb, Ni, Zn, Tl, Mo, W, V, U
- Fe, Mn
- Measure in each filtration aliquot

Organic carbon will be determined in each aliquot too.
Partition Coefficients

- \(K_{d}^{\text{POC-DOC}} = \left\{ \frac{[M_{\text{POC}}]}{[\text{POC}]} \right\}/\left\{ \frac{[M_{\text{DOC}}]}{[\text{DOC}]} \right\} \)

- \(K_{d}^{\text{COC-DOC}} = \left\{ \frac{[M_{\text{COC}}]}{[\text{COC}]} \right\}/\left\{ \frac{[M_{\text{DOC}}]}{[\text{DOC}]} \right\} \)

- \([\text{POC}], [\text{COC}], \text{ & } [\text{DOC}]\) are the concentration of particulate, colloidal, and dissolved organic carbon, respectively.

- \([M_{\text{POC}}], [M_{\text{COC}}], \text{ & } [M_{\text{DOC}}]\) are the concentration of individual trace elements associated with different size fractions of OC.

- \(M_{\text{POC}} > 0.45 \text{ um}\)
- \(0.45 \text{ um} \geq M_{\text{COC}} \geq 0.02 \text{ um}\)
- \(M_{\text{DOC}} < 0.02 \text{ um}\)
Lanthanide Series
Anthropogenic Gd anomalies

- Gd is used in medical magnetic resonance imaging
- Gd has high magnetic moment
- Administered as:
 - Gadodiamide
 - Gadopentetic acid
 - Gd-diethylenetriaminepenta-acetate, i.e., Gd(DPTA)
Anthropogenic Gd anomalies

• We will measure the lanthanide series elements in aliquots of our Bayou Bienvenue samples

• Direct measure of anthropogenic influences on these waters
Anthropogenic Gd anomalies

- Non-impacted estuaries do not have substantial Gd anomalies
- Indian River Lagoon in Florida

Johannesson et al. (in prep)