Floodplain Nutrient Retention along the Tangipahoa River

J. Harvey, G. Noe, Dan Kroes, D. Scott

Driving Questions

- What influence do floodplains have on riverine N loads and speciation?
- When are floodplains a source or sink for N?
 What forms of N and what N reactions are involved?

Abundance of active, forested floodplains in Southeastern US

Majority of water & nutrient flux occurs when river & floodplain waters are connected!

When does connectivity occur?

Retention: f(biogeochemistry, hydrology)

Deposition

- Multiple tiles distributed across floodplain
- Measuring net deposition
- $3.2 23.4 \text{ g m}^{-2}$ $\text{yr}^{-1} \text{ of N}$

Retention: f(biogeochemistry, hydrology)

 N mass balance during floods

<i>U_{event}</i> [mg m ⁻² d ⁻¹]				
	DON	NH ₄ ⁺	NO ₃	
Slough A	-136	-100	-278	
Slough B	-353	-463	-527	

- N mass balance during floods
- High removal rates, suggests importance of:

Coupled mineralization – nitrification - denitrification

<i>U_{event}</i> [mg m ⁻² d ⁻¹]				
	DON	NH ₄ ⁺	NO ₃	
Slough A	-136	-100	-278	
Slough B	-353	-463	-527	

- N mass balance during floods
- High removal rates
- NO₃⁻ primarily lost through denitrification

Results from mesocosm experiments

- N mass balance during floods
- High removal rates
- NO3- primarily lost through denitrification
- Removal rates are not limiting: NO₃⁻ availability is

Distribution of flood residence time compared with nitrate 1/2 life

Retention: f(biogeochemistry, hydrology)

Hydrologic Connectivity

- Connectivity = f(stage, topography)
- Physical measurements:
 - Water level sensors

Floodplain water level in 2 sloughs

Hydrologic Connectivity

- Connectivity = f(stage, topography)
- Physical measurements
- Developed GIS-based model: combines stage, topography to obtain inundation

What is annual removal along reach?

- Apply flood removal rates to estimated inundated area along reach for each day of 30-year flow record
- Daily N-fluxes estimated from NWIS measurements
- Quantify net removal

Highlights high N –flux when river & floodplain connected

What is annual removal along reach?

 N-retention largely depends on connectivity. Along this river 8 to 14% retention

What is annual removal along reach?

 But we need to understand N-fate during both wet & dry periods!

Unknown biogeochemical ?'s

-Fate of particulate organic matter-What happens between floods?

Current Focus & Next steps

- Identify water sources over range of flood magnitudes
- Examine fate of particulates deposited on floodplain

Current Focus & Next steps

- Identify water sources over range of flood magnitudes
- Examine fate of particulates deposited on floodplain
- Develop metric of river floodplain connectivity for stream network
 - Apply to stream network
 - Quantify connectivity
 - Potential use in floodplain valuation

Current Focus & Next steps

- Identify water sources over range of flood magnitudes
- Examine fate of particulates deposited on floodplain
- Develop metric of river floodplain connectivity for stream network
 - Apply to stream network
 - Quantify connectivity
 - Potential use in floodplain valuation

Plot showing the importance of floodplains in streams of different size & physiographic region: Floodplains are important!