Floodplain Nutrient Retention along the Tangipahoa River

J. Harvey, G. Noe, Dan Kroes, D. Scott
Driving Questions

- What influence do floodplains have on riverine N loads and speciation?

- When are floodplains a source or sink for N? What forms of N and what N reactions are involved?
Abundance of active, forested floodplains in Southeastern US
Majority of water & nutrient flux occurs when river & floodplain waters are connected!
When does connectivity occur?
Retention: $f(\text{biogeochemistry, hydrology})$
Deposition

- Multiple tiles distributed across floodplain
- Measuring net deposition
- $3.2 - 23.4 \text{ g m}^{-2} \text{ yr}^{-1}$ of N
deposited components

g/m²/yr

- total
- mineral
- organic
- carbon
- nitrogen
Single stage samplers
Retention: $f(\text{biogeochemistry, hydrology})$
N-biogeochemistry

- N mass balance during floods

<table>
<thead>
<tr>
<th>Slough</th>
<th>DON</th>
<th>NH$_4^+$</th>
<th>NO$_3^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slough A</td>
<td>-136</td>
<td>-100</td>
<td>-278</td>
</tr>
<tr>
<td>Slough B</td>
<td>-353</td>
<td>-463</td>
<td>-527</td>
</tr>
</tbody>
</table>

U_{event} [mg m$^{-2}$ d$^{-1}$]
N-biogeochemistry

- N mass balance during floods
- High removal rates, suggests importance of:
 Coupled mineralization – nitrification - denitrification

<table>
<thead>
<tr>
<th>Slough A</th>
<th>Slough B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON</td>
<td>NH\textsubscript{4}+</td>
</tr>
<tr>
<td>-136</td>
<td>-100</td>
</tr>
<tr>
<td>-353</td>
<td>-463</td>
</tr>
</tbody>
</table>

\(U_{\text{event}} \text{[mg m}^{-2} \text{d}^{-1}]\)
N-biogeochemistry

- N mass balance during floods
- High removal rates
- NO_3^- primarily lost through denitrification

Results from mesocosm experiments
N-biogeochemistry

- N mass balance during floods
- High removal rates
- NO₃⁻ primarily lost through denitrification
- Removal rates are not limiting: NO₃⁻ availability is...
Retention: \(f(\text{biogeochemistry, hydrology}) \)
Hydrologic Connectivity

• Connectivity = f(stage, topography)
• Physical measurements:
 • Water level sensors

Floodplain water level in 2 sloughs
Hydrologic Connectivity

- Connectivity = \(f(\text{stage, topography}) \)
- Physical measurements
- Developed GIS-based model: combines stage, topography to obtain inundation
What is annual removal along reach?

- Apply flood removal rates to estimated inundated area along reach for each day of 30-year flow record
- Daily N-fluxes estimated from NWIS measurements
- Quantify net removal

Highlights high N-flux when river & floodplain connected
What is annual removal along reach?

- N-retention largely depends on connectivity. Along this river 8 to 14% retention
What is annual removal along reach?

- But we need to understand N-fate during both wet & dry periods!
Unknown biogeochemical ?’s

-Fate of particulate organic matter
-What happens between floods?
Current Focus & Next steps

- Identify water sources over range of flood magnitudes
- Examine fate of particulates deposited on floodplain
Current Focus & Next steps

• Identify water sources over range of flood magnitudes
• Examine fate of particulates deposited on floodplain
• Develop metric of river floodplain connectivity for stream network
 o Apply to stream network
 o Quantify connectivity
 o Potential use in floodplain valuation
Current Focus & Next steps

• Identify water sources over range of flood magnitudes
• Examine fate of particulates deposited on floodplain
• Develop metric of river floodplain connectivity for stream network
 o Apply to stream network
 o Quantify connectivity
 o Potential use in floodplain valuation

Plot showing the importance of floodplains in streams of different size & physiographic region: Floodplains are important!